
Journal of Mathematical Chemistry 10(1992)25-39 25 

EFFECTIVE HAMILTONIAN METHOD FOR ENVIRONMENTAL EFFECTS 

S. HUZINAGA 
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 

S. KATSUKI 
Department of Physics, College of General Education, Kyushu University, Ropponmatsu, 
Fukuoka, Japan 

and 

O. MATSUOKA 
Department of Physics, The University of Electro-Communications, Chofu, Tokyo, Japan 

Abstract  

Some novel physical ideas and mathematical techniques are described, useful in the 
development of effective Hamiltonian methods for studying molecular environmental 
effects. 

1. Introduction 

There are a number of physical and chemical phenomena that are expected 
to be understood in terms of localized electronic states. Defects and impurities in 
a crystal, chemisorbed atoms and molecules, and transition metal ions embedded in 
a crystalline surrounding are some of the examples. Also, there is a traditional 
notion that many characteristics of  constituent parts of a large molecule, such as 
bond lengths, bond angles, spectroscopic force constants, etc., are more or less local 
entities. 

Theoretically, however, the localized electronic state is not well defined 
because of the intrinsic ambiguity in spatial form of individual one-electron functions 
with which the total wave function of the system is constructed. Dichotomy of  the 
MO theory and the VB theory is just one manifestation of the ambiguity. 

In the present work, the problem of  localizability of  electronic states is 
approached from a pragmatic point of view. The approach is based on a finite 
cluster model. It consists of two parts: (I) the theatre for localized electronic phenomena, 
and (II) the surrounding environment (see fig. 1). Atoms in region (I) contribute all 
or part of their electrons to the theatre, while electrons in region (II) remain basically 
dormant. 

We initiate a proving calculation with a rather small size of region (I) and 
with region (II) of an appropriate size large enough to avoid any artificial frontier 
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Fig. 1. Cluster slructure. 

effect. We then increase the size (the number of atoms involved) of region (I) with 
region (II) adjusted accordingly. If the computed electronic properties of the system 
become stabilized and insensitive to the change of size of the cluster, we take it as 
the indication of establishment of the localized electronic state. 

In order to carry out the computational procedure in a reliable way to the 
converging conclusion, it is imperative to develop an efficient ab initio calculational 
algorithm that enables us to treat a system of a fairly large number of atoms with 
theoretical confidence. It will defeat our original purpose of establishing the localizability 
computationally if we are forced to stop before reaching the state of convergence. 

In the following sections, some useful physical ideas and mathematical techniques 
are described to develop an efficient ab initio computational scheme to handle the 
system schematically shown in fig. 1. It contains three types of circular figures, 
unshaded circles, partially shaded and fully shaded ones. In the simplest and common 
situation they represent atoms with different degrees of freezing the electron orbital 
functions. How to represent these atoms ~ la ab initio, that is, without using parameters 
to be adjusted according to some experimentally obtained quantities, is the central 
theme of the following theoretical discussions. It is to be noted that those circular 
figures in fig. 1 can themselves be certain molecular entities such as various ligands 
in metal complexes or functional groups identified as such in large molecules. The 
mathematical techniques described in the following are flexible enough to deal with 
them. 

The theoretical development in the present paper is an extension of the 
formalism proposed and successfully applied by Barandiar~in and Seijo [ 1,2], where 
much relevant literature is cited. 
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2. Mathemat ica l  techniques  

2.1. S P E C T R A L  R E P R E S E N T A T I O N  OF O P E R A T O R S  

The spectral representation of a linear operator is a powerful mathematical  
notion. Here, we pick up a portion of the concept as a convenient  mathematical  
technique tailored for our purpose. 

Let O be a one-electron operator and ~ and V be two one-electron orbital 
functions, and let us consider the integral (matrix element),  

I = ( ¢ 1 0  I ~). (2.1) 

If we expand ¢ and V by a complete set of  orthonormal basis functions {fi}, 

(¢1 = ~ ( ¢ l f , . )  (J~ I, 
i 

I g )  = y__,l f j )  {fj I ttr), (2 .2)  
J 

then we have 

1 = ~ Y~ ( ¢ l ~ ) ( f i  ]OI f j ) ( f j l v / )  = ((~[POP[ V), (2.3) 
i j 

where 

P = ~ l ~ ) ( . t } [  (2 .4)  
i 

is a projection operator, p 2 =  p. Comparing (2.1) and (2.3), we identify 

P O P  = Z Z l Z ) < Z l O l f j ) < f j [  (2.5)  
i j 

as a spectral representation of  an operator O. 
If POP has some computational  advantage over the original operator O, the 

representation, a "coating" of an operator with a basis function set {j'}}, becomes 
a useful computational tool, as shown in the development of the effective Hamiltonian 
method for molecules [3]. 

In practice a finite, n-membered,  non-orthogonal  basis function set {Zp} is 
used with a real symmetric  overlap matrix: 

{Zp}, p = l , 2  . . . . .  n, 

Spq = {Zp l Zq) = Sqp. (2.6) 

This is a commonly  encountered situation in the Roo thaan-Ha l l  finite expansion 
method.  In terms of  {Zp}, 
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and 

P =  ~ ~[Zp)(S-1)pq(Zq[  (2.7) 
P q 

POP = ~ ~.flZp ) (S-1)pq (Zq lOlZr )(S-1)rs (Zs I 
pq rs 

= Z IXp)( S-10S-I  )pq (Xq]. (2.8) 
pq 

Since the basis set {Zp} is not complete, the representation POP in (2.8) is no 
longer equivalent to the original operator O, but can still be an acceptable approximation 
to the original. For example, if the effect of  the operator O is limited spatially 
within a short range and the electron orbital functions q~ and gt themselves are also 
in the linear combination of  {Zp}, POP can be a good replacement of  O in the 
calculation of  the integral 1 of  (2.1). 

2.2. 

as 

ENERGY SHIFT OPERATORS 

The total Hamiltonian for N electrons in an atom is written in atomic units 

N N 
H(1,2  . . . . .  N) = ~ h ( i ) + Z ( 1 / r i j  ), 

i i>j 

h(i) = - ( A i / 2 )  - (Z / r i). (2 .9)  

A unified Fock operator for the determination of  Har t r ee -Fock  one-electron orbitals 
{¢i} can be derived from H as 

Fl(ai) = ei I i), 

F = - ( A  / 2) - (Z / r) + ~_~ (aiJ  i - fliKi ) + R, 
i 

(2.10) 

where R is an operator to ensure proper handling of  open-shell electron configurations 
but not our concern at this moment. 

Suppose the Ha r t r ee -Fock  equation has been solved and the solution orbitals 
{~pi} have been obtained. F is expressed in terms of  the orbitals {~pi} and it is a one- 
electron operator. By adding to F a group of  energy shift operators 

k 

F ---) F +  or, (2.11) 
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we may rearrange the energy eigenvalue spectrum of  the original Hartree-Fock 
eq. (2.10) without disturbing the shape of the eigenfunctions: 

[ F + ~ dkl~Pk)(¢)kl]lcPi) = (el + di)l~i). 
k 

(2.12) 

The value of di can be chosen according to the need of shifting the position of  the 
energy eigenvalue of ~i to a certain position in the spectrum. This mathematical 
technique has been used extensively in the model potential method to establish the 
effective Hamiltonian and the Fock operator for valence electrons in atoms and 
molecules. However, the use has not to be limited to the core-valence division. 
Choice of positive values of {di} c a n  cover even all occupied orbitals {~i}. Then 
the operator F + cr represents a group of dormant (frozen) electrons but electron 
waves from outside can still penetrate into the frozen atomic entity by lhe wave 
components orthogonal to the occupied orbitals (see fig. 2(a)). This idea of varied 
degree of freezing could be useful for the treatment of  the environmental region of 
our Fluster model (fig. 1). 

(a) 

(b) 

Fig. 2. Changing frozen area in atoms and molecules. In (b), 
the frozen area may not be surrounded by the active area. 

3. Formalism for atoms and molecules 

3.1. ATOMS 

Various forms of the effective Hamiltonian for valence electrons in an atom 
have been proposed and used to economize molecular calculation of molecular 
systems containing heavy atoms. Many of them are claimed to be of an ab initio 
method in the sense that the method is free of  parameters determined by using 
experimental data. Among these ab initio methods, the ab initio model potential 
(AIMP) method developed mainly by Seijo and Barandiar~in [4] occupies a unique 
position. In the AIMP method, the core model potentials are constructed from the 
sole knowledge of frozen core orbitals without using valence orbitals and valence 
orbital energies of the reference all-electron atomic calculation. 
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The total Hamiltonian for N valence electrons of  an atom in the frozen core 
approximation may be written in atomic units as 

N N 

H(1,2 . . . . .  N) = ~_h( i )+E(1/r i j  ), 
i i>j 

h(i) = - ( A i  / 2) - (Z - Zcore ) / r /+ Vcore (i) + or(i), 

where 
c o r e  

Vcore = -Zco m ]ri + ~ [ 2 J c ( i ) - K c ( i ) ] ,  
C 

c o r e  

or(i) = - ~ 2ecl ~c ) (q~cl. 
C 

(3.1) 

(3.2) 

Zeore is the number of core electrons times the unit charge e. The operator Vcore 
represents the effect of  the frozen core electrons on the valence electrons and the 
shift operator cr enforces the core-va lence  orthogonality, preventing the valence 
orbitals from collapsing onto the core space. 

In the AIMP method, ~4ore is divided into two parts, 

Vcore(i) = Vcoul(i)+ Vexch(i), 

where 
c o r e  

I,~ul (i) = - Z c o r e / r / + 2 ~ J c ( i ) ,  
C 

core  

Vexch (i) = - ~ K c (i), 
C 

(3.3) 

and only the non-local exchange operator Vexch(i) is subjected to the spectral 
representation discussed before. The first part Vcou~(i) is actually a local spherical 
potential and can be expressed in any desired degree of accuracy in the following 
analytical form [4]: 

Vcoul (i) : Vcoul (ri) 

Vcou~,M P (r  i ) = ~ A k exp(-O~k/'~ 2 )/r/ ,  
k 

(3.4) 

where the parameters {Ak, ~k} are determined through least-squares fitting to Vcoul(ri), 
which is completely determined in terms of the core orbitals obtained in the reference 
all-electron atomic calculation. Therefore, the parameters {&, ak} are responsible 
for the accuracy of  the fitting but they are not adjustable parameters in the method. 
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It is, however, possible to eliminate these fitting parameters altogether by 
applying the technique of spectral respresentation to the entire V¢o~e(i) operator 
in (3.3): 

Vcore (i) ~ P(i)Vcore(i)P(i) = Ucore(i), 

P(i) = ~_~ ~ lZp( i ) ) (S  -1 )pq (Xq (i)1. ( 3 . 5 )  
P q 

A natural choice of the representation basis set {Zp} in the projection operator P(i) 
is a set of primitive functions obtained by decontracting contracted basis functions 
used in the reference all-electron atomic calculations. This choice of representation 
basis has given satisfactory numerical results in a test calculation [5]. If there is any 
indication of lack of accuracy, the representation basis can be supplemented at both 
ends of large and small orbital exponents. 

3.2. M O L E C U L E S  

The Hamiltonian for N valence electrons of a molecule may be written as 

H ( 1 , 2  . . . . .  N )  = ~ h ( i ) + ~ ( 1 / r i j ) +  ~VIj (Ru) ,  
i i>j I>J 

h( i )=- (A  i / 2 ) - ~ _ , ( Z  I - Z l r e ) / r l  + ~ Utcore(i)+ ~ cr I (i), 
I 1 I 

VI J (RI j )  (Z  1 I ) (Z  J J = --  Zcore - Zcore ) / RIj. (3.6) 

The core-electron operator U~ore(i) determined for atom I is carried over to the 
molecular Hamiltonian without change. Vtj represents the internuclear repulsion 
between nuclei I and J spherically screened by the core electrons. The above 
Hamiltonian has been tested for N2, Pz and As 2 on the Hartree-Fock level and the 
result is generally satisfactory [5]. 

For spherically shaped frozen core regions, the method of Seijo and 
Barandiar,'in [4], in which Vcoul in (3) is explicitly expressed as a local potential, 
could be more economical than the approach that includes both Vcoul and Vex~h in 
(3.3) in the spectral representation. However, the latter approach offers an attractive 
possibility of representing non-spherical frozen areas (fig. 2(b)). As discussed in 
some detail elsewhere [3], the spectral representation can be applied to a variety of 
quantum mechanical operators including Coulomb (J) and exchange (K) operators 
of arbitrary spatial shape. For example, an effective Hamiltonian may be constructed 
for two lone-pair electrons of NH 3 as the two active electrons, with the rest as a 
frozen area of pyramidal shape. A similar idea may also be applied to a planar C2H4 
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with the o--skeleton as the cores, leaving two ~z electrons as the active electrons. 
Furthermore, as indicated toward the end of the previous section, the representation 
can be applied to an entire molecule as a building block of  the outermost environmental 
region (see fig. 2(b)). It is now possible to examine the validity of  the classic ligand 
field theory by starting with an all-electron treatment of ligand atoms and molecules 
and then gradually freezing the electron orbitals until the establishment of the 
electrostatic ligand field, including multipole effects [3] and guarded by the energy 
shift operator {crl(i)} in (3.6). 

The total energy of the system is calculated from the Hamiltonian (3.6). The 
energy shift operator term ~cr  must be included in the calculation, especially in the 
matrix element computation of the electron correlation calculations in which the 
entire virtual space is used. 

4. Approximate Fock operator for a cluster 

In this section, we describe another theoretical idea that may enable us to 
conduct a quantum mechanical treatment of a large cluster. In our cluster model 
schematically illustrated in fig. 1, the entire body, the region (I) + the region (II), 
is regarded as a finite cluster. Atoms and molecules in region (I) contribute electrons 
to the total wave function of the system, but there is no contribution of electrons 
from region (II). A more common definition of a cluster would be region (I) only, 
with region (II) regarded as the environment surrounding the cluster. Barandiar~in 
and Seijo [1] presented an AIMP formalism for such a cluster-environment system 
and their formulation can be easily generalized to cover the cluster model of  the 
present paper. 

As indicated by the partiallly shaded circles in fig. 1, the inner cluster 
region (I) has the "gray" area. Atoms and molecules there do contribute electrons 
to the total wave function but with varied degree. As explained in the introduction, 
one of  the primary objectives of the present work is to establish a computational 
mechanism to validate the cluster model, and it is important to develop an approximation 
to make it feasible to handle a fairly large number of atoms of  the gray area in order 
to achieve that objective, in the case that a straightforward application of  the AIMP 
method of Scijo and Barandiarfin, or the ab initio effective Hamiltonian method 
described in the preceding sections, becomes too laborious and expensive. 

Historically, the cluster model was adopted because of our incapability of  
conducting SCF MO calculations on a large system, and the size of  the cluster was 
dictated critically by the computational feasibility. If we can perform a standard 
SCF calculation on a large molecular system routinely, the whole outlook of  the 
cluster approximation will change. 

The technical trouble associated with an SCF calculation on a system of  a 
large number of atoms possibly containing some transition metal atoms is the 
convergence (divergence) of  the SCF process. The Fock operator is a precisely 
definable one-electron operator, but the Har t ree-Fock  equation has to be solved 
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iteratively. On the other hand, the one-electron Htickel Hamiltonian cannot be 
written down explicitly, but the solution of the Hfickel equation is obtained by a 
non-iterative diagonalization procedure and there is no problem of divergence. 

We shall present a one-electron Hamiltonian usable for a large molecule, an 
approximation to the molecular Fock operator, which can be written down explicitly 
just as the Fock operator and used as conveniently as the H~ickel Hamiltonian. It 
contains some adjustable parameters, but they are calibrated through atomic and 
molecular reference calculations. Molecular orbitals and orbital energies are obtained 
as the eigenfunctions and the eigenvalues of the one-electron operator by non- 
iterative diagonalization just as in the Htickel method. The method might be nicknamed 
the ab initio Htickel (abiHtick) method. A similar idea was proposed and developed 
some years ago by Nicolas and Durand [6]. The present work is a variation of  their 
idea. 

Many molecules have a closed-shell electron configuration and we shall 
discuss the closed-shell case, although the method to be developed here is applicable 
to the open-shell case as well. The total wave function is 

~P= AsL[qh(1)a(1)qh(2)/5(2) . . . ~o, (2n-1)a(2n-1)cp , , (2n)~(2n)] ,  (4.1) 

and the total energy is 

n ?1 n 

E =  2 2 H i + Z Z (2J i j -K i j ) ,  
i i .i 

H i = (qgil--(A/2)--~.~(ZA/rA)lCPi), 
A 

(4.2) 

Jij = { q~il Jjl ~i ), Kij = ( q~il Kjl q~i ). 

The Har t ree-Fock  equation is 

F~o i = g i ( o i ,  

F -- - (z~/2)-  £ ( Z  A / r A )  q- Z ( 2 J j  - K j ) .  
A j 

(4.3) 

The summation index j runs over the occupied molecular orbitals {¢pj} that are 
usually expanded with a basis function set {Zr}, 

gj =~ZrCd.  (4.4) 
r 

Then the Fock operator F is expressed as 
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F = -(A/2)- y_~ (Z A irA)+ ~F..(2J,s- Krs)Y ~ crjcsj. 
A rs j 

(4.5) 

The basis set {Z,} is usually a set of functions placed on atomic sites in the 
molecule, 

{XI '  X2 .. . . .  Xt' Xt+l . . . . . . . . . . . . . . . .  } 
t I I  I I I t I I  , , ,  

atom A basis addition atom B basis addition (4.6) 
[ I I I I  . . . .  

on site A on site B 

and each atomic basis function group consists of the atomic basis functions used 
in the calculation of isolated atom and some additional diffuse and polarization 
functions. The Hartree-Fock-Roothaan equation is 

FC i = EiSc i 

Fpq = (zpIF[Zq), Spq = (ZplXq), (4.7) 

where F is given in (4.5) and in the fully expanded form, 

r$  

npq -.~ (XpI - - (A /2 ) - -  Z ( Z A  /rA)IXq),  
A 

D,s = 2 ~ c~jc~j , 
J 

~pq,rs = [~pZql~rXs ] - I [ZpXsl ~r~q l, 

[ablcd] = II  a* (1)b(1) (1 / r12 )c* (2)d(2)dVldV 2 . (4.8) 

In the semi-empirical all-valence electron SCF method (CNDO, etc.), many different 
schemes were proposed to obtain approximate values of the matrix elements {Fpq}. 
Since honest computation of molecular integrals in ~q,,, is difficult and expensive, 
various drastic approximations were introduced to simplify the evaluation of the 
molecular integrals. The ZDO (zero differential overlap) approximation is one of 
those approximations. This sort of approach may be characterized as microscopic 
in the sense that individual one-electron and two-electron integrals in Fpq were 
doctored according to the individual types. 
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In contrast, our approach may be called macroscopic or global because the 
operator F itself, not individual terms of the matrix element Fpq, is treated by an 
approximation method which might be termed the LCAOP (linear combination of 
atomic operators) method. Our physical intuition tells us that the effect of the 
second and third term of the Fock operator (4.5) on electrons may be approximated 
by the sum of appropriate potential fields assigned to individual atomic sites: 

F = - ( A / 2 ) + G  A + G  B +G c +... 

= - ( A / 2 )  + ~ G A . (4.9) 
A 

There are many possibilities in the choice of the actual form of GA. In fact, it is 
theoretically possible to define {GA} such that the equal sign holds in (4.9). 

A natural way of molding GA would be to first establish an atomic Fock 
operator F a based on an SCF calculation and then obtain GA as 

GA = FA + (A/2). (4.10) 

As commented on the F operator in (2.10), there is a complication in the restricted 
Hartree-Fock formalism for the open-shell electron configuration, a norm for ground- 
state atoms. It is possible, however, to prepare a single Fock operator for all the 
orbitals (closed-shell and open-shell) in the form 

F A = - ( A / 2 )  - (Z A /r  A ) + Z (a t  Jr - btKt ), 
l 

(4.11) 

with very slight deviations from the authentic SCF orbitals and orbital energies, if 
parameters {at, bt} are judiciously chosen. Suppose that the SCF calculation for the 
ground state of atom A is conducted by using the properly parametrized FA and the 
expansion basis function set marked "atom A basis" in (4.6). Explicitly, 

where 

FA=_(AI2)_(ZAIrA)+~ Z ( a t J r  s A" A --  b l K r s ) C r l  Cs l ,  

r s e A  l 

Yrsf(r)  = I [Z~ (r') Zs (r ' )  d v ' / I r  - r'l] f ( r ) ,  

K r ' f ( r )  = I [Zr (r') f ( r ' )  d v ' / I r  - r'112', (r), 

(4.12) 

(4.13) 

and then from (4.10), 

GA --( ZA / ra ) + ~ ~ (at Jr, A ° A = - b l K r s ) C r l  Csl , 
r s¢A l 

(4,14) 
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and from (4.9), 

Gq = (zpl- (A / 2)1Zq ) + ~ (Zpl GAI Zq )' 
A 

(XpJ GAI Zq ) = (ZpJ- (A / 2)1Xq ) q- E [ZpZqJ Xr~,s ] E  atCr~ "cA 
rs~A l 

- E [ZpZsIZrZq]E btcA'ca" (4.15) 
rs~A l 

Note here that the basis function indices (p, q) cover all the basis functions in (4.6) 
and therefore in order to compute {Fpq} from (4.15), we need a majority of molecular 
integrals over the molecular basis set {Zp}. However, these integrals are to be 
calculated anyway before the SCF stage of the molecular calculation; {Fpq} obtained 
from (4.15) may serve as a good starting point to initiate the SCF process. This is 
a useful by-product in the application of the LCAOP approximation to the molecular 
Fock operator. 

Now we proceed to treat the operator GA by an appropriate spectral 
representation 

G A ~ PAGAPA , 

Then, 

Pa = ~ l fA) (s -1)Ja( f l  A J. (4.16) 
k/ 

Fpq ~ (Zf l -  (A/2)IZq) + ~ (ZpJ PAGAPAIZq ). (4.17) 
A 

The second term in the above now requires only overlap integrals, thus avoiding 
costly molecular integral calculation in (4.15). This sort of projection for approximating 
multicenter integrals was used by Ruedenberg [7] and utilized extensively by 
Mayer [8]. It can be hoped that this method of computing approximate values of 
{Fpq} would enable us to obtain molecular orbitals of good quality over a large 
cluster system. 

The present method involves two steps of approximation. The first is to 
approximate a genuine molecular Fock operator in the form of a linear combination 
of atomic operators (LCAOP), and the second is to replace the atomic operators 
with their spectral representations. 

5. Test calculations 

The theoretical ideas presented in the preceding section are in the process of 
preliminary testing. So far, a few test calculations have been done on small molecules. 
We shall limit ourselves to a cursory review of some preliminary results of the test. 
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T h e  i d e a  o f  u s i n g  f o r m u l a  ( 4 . 1 5 )  t o  p r e p a r e  a s t a r t i n g  s e t  o f  {Fpq} f o r  t h e  

s t a n d a r d  S C F  m o l e c u l a r  c a l c u l a t i o n s  w a s  t e s t e d  f o r  LiE a n d  F2 b y  u s i n g  a G A M E S S  

p r o g r a m .  S a v i n g  h a s  b e e n  o n l y  in  t h e  f i r s t  t h r e e  o r  f o u r  S C F  i t e r a t i o n s  in  t h e s e  

c a s e s ,  b u t  t h e  m e t h o d  w i l l  p r o v e  m o r e  u s e f u l  f o r  m o r e  d i f f i c u l t  c a s e s .  

T h e  a b i H i J c k  m e t h o d  h a s  b e e n  t e s t e d  f o r  H 2, L i  2, N2,  t=2, L i F ,  C O ,  H 2 0  a n d  

L i 2 0 .  R e s u l t s  f o r  H2,  L i z ,  N2,  a n d  C H 4  t u r n e d  o u t  to  b e  m o r e  o r  l e s s  a c c e p t a b l e .  

T a b l e  1 g i v e s  t h e  e s s e n c e  o f  t h e  n u m b e r i c a l  r e s u l t  f o r  N2  a n d  t a b l e  2 f o r  C H 4 .  W e  

Table 1 

N2: total energy and orbital energies [(721/61) CGTO basis set]. 

Ordinary SCF abiHtlck 

(GAMESS) 

R (a.u.) E t (a.u.) E t (a.u.) 

1.5 - 108.1834 
1.75 - 108.7049 
2.0 - 108.8597 
2.25 - 108.8525 
2.5 - 108.7799 

- 107.1009 
- 107.5299 
- 107.5497 
- 107.3984 
- 107.2053 

R = 2.0 (a.u.) ei (a.u.) e/(a.u.) 

1era - 15.736 - 15.646 
1 cr u - 15.732 - 15.636 
2or s - 1.561 - 1.740 
20" u - 0.765 - 0.703 
1 ~ru - 0.652 - 0.477 
3era - 0.627 - 0.424 

Table 2 

CH4: total energy and orbital energies [(721/61) CGTO for C, (51) CGTO for H]. 

Ordinary SCF 

(GAMESS) 

abiHilck 

R/~13 (a.u.) E t (a.u.) E t (a.u.) 

0.9 - 39.6058 
1.0 - 40.0225 - 39.7794 
1.1 - 40.1272 - 39.8037 
1.2 - 40.1575 - 39.7423 
1.3 - 40.1417 - 39.6323 
1 . 4  - 40.0979 - 39.4952 

R/~13 = 1.2 (a.u.) t~i (a.u.) ei (a.u.) 

1 a I - 11.249 - 11.355 
2a 1 - 0.953 - 1.040 
I t  2 - 0.551 - 0.481 
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have encountered some serious difficulty producing a proper minimum in the total 
energy as a function of the internuclear distance for LiF and CO. The bond angle 
of  Li20 came out correctly to be 180 °, but this was not exactly a source of  joy 
because we also obtained a linear H20. 

Adjustable parameters of  the method are {at, bt} in (4.14) for each atom. 
These parameters originate from the vector coupling coefficients of  individual atoms 
and if the orbital l accommodates two electrons, then at = 2 and bt = 1. Therefore, 
for filled inner orbitals these fixed values were assigned. For outer orbitals, we 
adjusted one or two of them to reproduce results of  the authentic open-shell restricted 
Har t ree-Fock atomic calculation and then brought them to the molecular calculation. 
We have been learning the need to introduce some sort of  iterative procedure to 
readjust these parameters in the molecular environment, reminiscent of  the o3- 
technique of the Htickel method. As can be seen in the expression of  (Zp I GA IZq) 
in (4.15), the readjustment of at and bl has something to do with the readjustment 
of  local electron densities, which is bound to happen when atoms with different 
electronegativities are involved. 

We hope that a concrete formulation of the present ideas and approaches will 
be reported in the near future as a useful approximate method for the quantum 
mechanical treatment of a large cluster. 

6. Relativistic effects 

Relativistic effects are very important in many physical and chemical systems 
to which our cluster model is expected to be applied. We have successfully 
incorporated the mass-ve loc i ty  and the Darwin term to our effective Hamiltonian 
formalism [9, 10] based on the work of Wood and Boring [11]. Along the same line, 
the sp in-orbi t  interaction term to be used in the effective Hamiltonian has also been 
worked in the form [3]: 

Hso = (cz2/2) B(1/r) (dVm/dr)s . I. 

The quantities B and Vnt are completely determined from the C o w a n - G r i f f i n -  
Boring atomic calculation. There is no parameter adjustment, theoretically or 
otherwise. 

These three terms in the approximate relativistic Hamiltonian, mass-veloci ty ,  
Darwin, and sp in -o rb i t  interaction, are particularly suitable for the spectral 
representation because they are all short-range effects. One of us (O.M.) has succeeded 
in including the two-electron Breit interaction systematically in his Di rac -Fock  
atomic calculation. The interaction can also be included in our cluster calculation 
if the need arises. 
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